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1. Introduction

Globally acid rock drainage (ARD) is a major pollution problem that
poses severe adverse risks to the environment (Gray, 1996, 1998;
Azapagic, 2004). The probable global area covered with mine waste is
in the order of 100 million ha that contain several hundred thousand
million tonnes of mine wastes, and 20,000–25,000 million tonnes of
solid waste is added every year (Lottermoser, 2010). The associated
liability costs of potentially acid-generating wastes at minesites are
estimated to be US$ 1.2–20.6 billion in USA, US$ 1.3–3.3 billion in
Canada, and US$ 530 million in Australia (Miller et al., 2006). However,
the authors suspect that the estimate for Canada should be at least an
order of magnitude higher.

ARD is generated when a sulfide-bearing material is reacted with
oxygen and water during mining activities (Morin & Hutt, 2001; Price,
2009). The reaction results in oxidation andotherweatheringprocesses,
which changes relatively insoluble chemical species in sulfide minerals
into more easily dissolved free ionic species (e.g., Cu, Cd and Zn) or
secondaryminerals (e.g., sulfate, carbonates andoxyhydroxides).More-
over, the oxidation of some sulfide minerals produces acid that may
lower the drainage pH. A lower drainage pH could increase the rate of
sulfide oxidation, solubility of many products of sulfide oxidation, and
rate of weathering for other minerals.

Predicting the future drainage chemistry is important to assess
potential environmental risks of ARD and implement appropriate miti-
gation measures that reduce adverse environmental risks (Betrie et al.,
2012). Predictive models are one of the approaches used to predict
the future drainage chemistry of minesites. These models are classified
as process-based and empirical (data-driven) models (Maest et al.,
2005; Price, 2009). Process-based models describe the ARD system in
terms of chemical and/or physical processes that are believed to control
ARD generation (Betrie et al., 2012). Nevertheless, the physical/chemical
processes that govern generation of ARD are not fully understood (Price,
2009). Subsequently, uncertainty is introduced in the prediction of drain-
age chemistry due to poor representation of the ARD system. In addition,
process-based models introduce uncertainty due to data because they
use database information (e.g., solubility product) that might not match
a given site (Price, 2009). On the other hand, data-driven models (e.g.,
machine learning, soft-computing, computational intelligence) describe
the time-dependent behavior of one ormore variables of the ARD system
in terms of observed data trends obtained from years of monitoring at a
minesite (Betrie et al., 2012). Therefore, these models are prone to un-
certainties in the data that arise due to epistemic (e.g., measurement er-
rors and limited sample size) and aleatory (e.g., temporal and spatial
variations) uncertainties, where these uncertainties arise due to incom-
plete knowledge and natural stochasticity, respectively (Sentz & Ferson,
2002).

The literature review shows that machine learning techniques (e.g.,
ANN and SVM) have been used to predict the ARD drainage chemistry.
Khandelwal & Singh (2005) compared ANN and multiple regression
analysis (MRA) to predict chemical parameters (sulfate, chloride, total
dissolved solid (TDS) and others) as function of physical parameters
(pH, temperature, and hardness). They reported that ANN provided
acceptable results compared to MRA. Rooki et al. (2011) evaluated
two types of ANN (back propagation neural network (BPNN) and general
regression neural network (GRNN)) and MRA to predict heavy metals
(Cu, Fe, Mn, Zn) as function of physical/chemical parameters (pH, sulfate,
andMg) in the Shur River near Sarcheshmeh Copper mine, Iran. They re-
ported that the predictive accuracy of BPNN is the best followed by GRNN
and MRA. For the Shur River and the same input–output variables,
Aryafar et al. (2012) applied SVMand compared to their GRNNmodel re-
sults. The results showed that the predictive accuracy of SVMwas slightly
better than ANN.

Betrie et al. (2012) evaluated the predictive accuracy and uncer-
tainty of four machine learning techniques (ANN, SVM, mode trees,
and K-nearest neighbors) to predict copper concentration as a
function of physical/chemical parameters and their time lags. The
authors reported that SVM performed best followed by ANN, model
trees and K-nearest neighbors both in terms of predictive accuracy
and uncertainty. The prediction accuracy refers to the difference be-
tween observed and predicted values, whereas the predictive uncer-
tainty refers to the variability of the overall error around the mean
error (Betrie et al., 2012).

Although identification and quantification of uncertainties are integral
parts of ARD assessment and risk mitigation (Price, 2009), previous stud-
ies have not addressed uncertainty issues except a minor attempt by
Betrie et al. (2012). In this paper, predictive uncertainties of ANN and
SVM due to input data are quantified using the probability bounds ap-
proach. The probability bounds approach is an uncertainty analysismeth-
od that combines probability theory and interval arithmetic to produce
probability boxes, which allow the comprehensive propagation of both
variability and uncertainty rigorously (Tucker & Ferson, 2003). Further-
more, predictions of ANN and SVM are integrated using four aggregation
methods in order to improve the prediction of the individual technique.
Aggregation methods are used to combine information obtained from
various sources in order to improve the reliability of information (Sentz
& Ferson, 2002).

The remainder of this paper is structured as follows. The next sec-
tion presents the descriptions of ANN and SVM techniques and the
method used for data preprocessing including treating missing and
outlier values, defining modeling variables and conducting uncer-
tainty analysis. The Results and discussion section presents the
main findings of this study and discusses these findings, respectively.
The Summary and conclusions section of this study completes this
paper.
2. Material and methods

Themethodology followed in this study is depicted in Fig. 1. It shows
that the methodology consists of five blocks. In the first block, data
pre-processing is done that includes filling missing values and outli-
er analysis. In the second block, variables that control drainage
chemistry of ARD are identified and used to develop model using
the machine learning techniques. In the third block, the dataset is di-
vided into training and testing sets using ten-fold cross-validation
technique. The training dataset is used to optimize parameters of
the models, whereas the test dataset is used for predicting drainage
chemistry. In the fourth block, first the predictive accuracy of training
models is evaluated using four statistical techniques. If the results of
training are not acceptable based on the obtained statistics, themodeling
process would be reinitiated from the second block. However, the pre-
dictive accuracy and uncertainty for test models would be initiated if
the training models provide acceptable results. In the last block, the un-
certainties due to data and model are quantified using probability
bounds approach. Also, predictions from ANN and SVM are integrated
using four aggregation methods to reduce the predictive uncertainty of
individual models.
2.1. Machine learning techniques and uncertainty analysis

Machine learning is an algorithm that estimates an unknown de-
pendency between mine waste geochemical system inputs and its
outputs from the available data (Betrie et al., 2012). In this study,
ANN and SVM techniques are used since they performed well in
our previous studies. These two techniques are implemented using
WEKA 3.6.4 Software (Bouckaert et al., 2010). The concept of machine
learning and the detailed evaluation of various machine learning tech-
niques can be seen in Betrie et al. (2012). The description of ANN and
SVM techniques is described in detail, consistent with Betrie et al.
(2012), in the following subsections.
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Fig. 1. A schematic representation of the methodology used in this study.
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Fig. 2. Multilayer perceptron neural networks.
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2.1.1. Artificial neural network (ANN)
Artificial neural network (ANN) is one ofmachine learning techniques

that consist of neurons with massively weighted interconnections
(Mitchell, 1997). These neurons are arranged as input layer, hidden
layer and output layer as displayed in Fig. 2. The task of input layer is
only to send the input signals to the hidden layer without performing
any operations. The hidden and output layers multiply the input signals
by set of weights and either linearly or nonlinearly transform results
into output values. Theseweights are optimized during ANN training pro-
cess to obtain reasonable predictive accuracy.

In this study, themultilayer perceptron is used although there are var-
ious types of ANN algorithms (Mitchell, 1997). Multilayer perceptron is a
feedforward neural network, where signals always travel in the direction
of the output layer. Typical multilayer perceptrons with one hidden layer
can be mathematically expressed in Eqs. (1)–(4). The outputs of hidden
layer (Zj) is obtained as (i) summing the products of the inputs
(Xi) and weight vectors (aij) and a hidden layer's bias term (a0j),
and (ii) transforming this sum using transfer function g as shown
in Eqs. (1) and (2), respectively. The most widely used transfer
functions are logistic and hyperbolic tangent. Similarly, the outputs
of the output layer (Yk) are obtained by (i) summing the products of
hidden layer's outputs (Zj) and weight vectors (bjk) and output
layer's bias term (b0k), and (ii) transforming this sum using transfer
function gas shown in Eqs. (3) and (4), respectively.

uj ¼
XNinp

i¼1

Xiaij þ a0 j ð1Þ

Z j ¼ g uj

� �
ð2Þ

vk ¼
XNhid

j¼1

Z jbjk þ b0k ð3Þ

Yk ¼ g vkð Þ ð4Þ

2.1.2. Support vector machine (SVM)
The support vector machine was mainly developed by Vapnik and

co-workers (Vapnik, 1998; Cherkassky and Mulier, 2007). Its principle
is based on the Structural Risk Minimization that overcomes the limita-
tion of the traditional Empirical RiskMinimization technique under lim-
ited training data. The Structural Risk Minimization aims at minimizing
a bound on the generalization error of a model instead of minimizing
the error on the training dataset. The SVM algorithm was first devel-
oped for classification problems and then adapted to address regression
problems. In this study, the basic idea of SVM regression is illustrated
since a regression problem is solved.

The complete description of SVM regression is well presented by
Smola and Scholkopf (2003) and summary of it presented in this
study. Given a training dataset (xi, yi), where xi is the i-th input pattern
and yi is the corresponding target value yi∈ℝ. The goal of SVMregression
is to find a function f(x) that has at the most ε deviation from actually
obtained targets yi for all training data, and at the same time, is as flat
as possible (Vapnik, 2000). The function f is represented using a linear
function in the feature space

f xð Þ ¼ w; xh i þ b with w∈X; b∈ℝ ð5Þ

where 〈.,. 〉 denotes the dot product in X. In this case, the flatness
means seeking a small w. This can be ensured by minimizing the norm
(i.e., ‖w‖2 = 〈w.w〉) if the assumption that a function f is known a priori
to approximate all pairs (xi, yi) with precision. If such function is not
known a priori, it is possible to introduce slack variables ξi, ξi⁎ and allow
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for some errors. This minimization problem can be mathematically
expressed as

minimize
1
2

wk k2 þ C
X
i

ξi þ ξ�i
� �

Subject to
yi− w; xih i−b≤ε þ ξi
w; xih i þ b−yi≤ε þ ξ�i

ξi; ξ
�
i ≥0

:

8<
:

ð6Þ

The constant C N 0 determines the tradeoff between the flatness of f
and the amount up to which deviations larger than ε are tolerated. The
constrained optimization problem is converted into unconstrained opti-
mization by introducing Lagrange function. The Lagrange function is
constructed from the objective function and the corresponding con-
straints by introducing a dual set of variables as follows:

L ¼ 1
2

wk k2 þ C
Xl

i¼1

ξi þ ξ�i
� �

−
Xl

i¼1

αi ε þ ξi−yið Þ þ w; xih i þ bÞ−

Xl

i¼1

α�
i ε þ ξ�i þ yi− w; xih i−b
� �

−
Xl

i¼1

ηiξi þ η�i ξ
�
i

� �
:

ð7Þ

It follows from the saddle point condition that the partial derivatives
of L with respect to the primal variables (w, b, ξi, ξi⁎) have to vanish for
optimality. Substituting the results of this derivation into Eq. (7) yields
the dual optimization problem.

Maximize :
1
2

Xl

i¼1

αi−α�
i

� �
α j−α�

j

� �
xi; xj

D E
−ε

Xl

i¼1

αi þ α�
i

� �þ
Xl

i¼1

yi αi−α�
i

� �

Subject to :
Xl

i¼1

αi−α�
i

� � ¼ 0andαi;α
�
i ∈ 0;C½ �:

ð8Þ

Once the coefficients αi and αi
⁎ are determined from Eq. (8), the

desired vectors can be written as follows:

w ¼
Xl

i¼1

αi−α�
i

� �
xi;andtherefore f xð Þ ¼

Xl

i¼1

αi−α�
i

� �
xi; xh i þ b: ð9Þ

Nonlinear regression problems are very common inmost engineering
applications. In such case, a nonlinear mapping kernel K is used to map
the data into a higher-dimensional feature space or hyperplane by the
functionΦ. The kernel function, K(xi, x) = 〈Φ(xi), Φ(x)〉 can assume any
form. In this study, the polynomial (SVM-Poly) kernel is used, which is
shown in equation

K xi; xð Þ ¼ γ xi; xh i þ τð Þd;γN0 ð10Þ

where γ, τ, and, d are kernel parameters.

2.2. Uncertainty analysis

Uncertainties such as epistemic and aleatory from data, parameters
and model conceptualization propagate into prediction results. In this
subsection, the probability bounds approach is used to quantify the pre-
diction uncertainties and aggregation methods are used to improve
model uncertainties.

2.2.1. Probability bounds
Probability bounds (P-boxes) is amethod used to represent imprecise

probability. Imprecise probability is a generalization of probability theory
when one is not able to define a precise probability function P for an
event x, which is element of the universal set X (Walley, 1991). An
imprecise probability function P(x) is characterized by its lower proba-
bilityP xð Þ and upper probabilityP xð Þ . Lower probability and upper
probability functions map an event x ∈ X in interval values between
zero and one (Ferson et al., 2003). The lower and upper bounds on
P(x) are the probabilities that a randomvariable X is smaller and greater
than x, respectively. In this study, the predicted and observed P-boxes
are constructed to compare the uncertainties and this is implemented
using Risk Cal 4.0 software (Ferson, 2000).

2.2.2. Aggregation methods
Aggregation methods are used to combine information obtained

from various sources in order to improve the reliability of information
for better decision-making (Sentz & Ferson, 2002). In this study, four ag-
gregation methods are used to integrate the prediction results of ANN
and SVM. These methods are intersection, envelope, mixture, and
averaging.

The intersection method gives the smallest region that all predic-
tions agree with high degree of confidence (Ferson et al., 2003). This
method is appropriate to use when a modeler strongly believes that
the prediction of each model encloses the distribution of the observed

data. Suppose P1 ¼ P1;P1

h i
; P2 ¼ P2;P2

h i
;…; Pn ¼ Pn;Pn

h i
are predic-

tion P-boxes of many models, the intersection method can be mathe-
matically expressed using the equation below

P1 � P2 �… � Pn ¼ max P1 ; P2 ;…; Pn

� �
; min P1; P2;…; Pn

� �h i
: ð11Þ

The envelope method gives the biggest region that each prediction
has a certain degree of confidence. It is appropriate when a modeler
believes that at least one of the predictions encloses the observed distri-
bution (Ferson et al., 2003). For n prediction P-boxes mentioned above,
the envelope method can be mathematically expressed as follows

P1 � P2 �… � Pn ¼ min P1 ; P2 ;…; Pn

� �
; max P1; P2;…; Pn

� �h i
: ð12Þ

The mixture method treats disagreements between the prediction
P-boxes from each model and gives a condensed P-box without erasing
disagreements (Ferson et al., 2003). For n prediction P-boxes men-
tioned above, the mixture method can be mathematically expressed
by the equation below

P ¼ w1P1 þw2P2 þ…þwnP3

� �
=
X

wi

P ¼ w1P1 þw2P2 þ…þwnPn
� �

=
X

wi

ð13Þ

where w1, w2, …, wn are weights of the P-boxes.
The average method simply horizontally averages the edges of

the P-box by finding the inversion of the lower and upper bounds
(Ferson et al., 2003). For n-boxes the average method can be mathe-
matically expressed by the following equation

P�ð Þ−1 ¼ 1=nð Þ P−1
1 þ P−1

2 þ…þ P−1
n

� �

P�� �−1 ¼ 1=nð Þ P−1
1 þ P−1

2 þ P−1
n

� � ð14Þ

where −1 represents the inverse function.

2.3. Case study

2.3.1. Data preparation
The data used for this study was obtained from a copper–molyb-

denum–gold–silver–rhenium (CMGSR) minesite located in British
Columbia, Canada. The dataset was collected for over 25 years and
it consists of 5000 values and 13 variables. These variables are pH,
conductivity (μs/cm), acidity (CaCO3mg/L), alkalinity (mg/L), sulfate
(mg/L), flow (mg/L), copper (mg/L), cadmium (mg/L), zinc (mg/L),
calcium (mg/L),magnesium (mg/L), and aluminum (mg/L). Conductivity,
pH, and flow were measured in situ at monitoring stations, whereas the
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concentrations of alkalinity, acidity and dissolved metals were measured
at CMGSR environmental laboratory. However, this dataset contains
numerous missing values and outliers (Betrie et al., 2012; Morin et al.,
2012).

2.3.1.1. Missing values. Missing data present challenges in data driven
modeling that includesmachine learning, soft-computing anddatamin-
ing (Cherkassky and Mulier, 2006; Betrie et al., submitted for
publication). The challenges associated with missing data include the
use and interpretation of partially collected data (Betrie et al., 2012) and
accuracy of learning algorithms (Bello, 1995; Acuna & Rodriguez, 2004).

Themissing values in this databasewere estimated using the iterative
robust model-based imputation (IRMI) algorithm. The IRMI algorithm is
a model-based imputation method where missing values are estimated
using sequence of regression models (Templ et al., 2011). The IRMI algo-
rithm, used to estimate the missing values, is implemented in RStudio
(2012) and a summary of this algorithm is presented in Betrie et al.
(submitted for publication). The number of missing values estimated
for various parameters were: 434 for pH, 790 for conductivity, 3412 for
alkalinity, 3725 for acidity, 1657 for sulfate, 1253 for calcium (Ca), 1257
for magnesium (Mg), 1543 for aluminum (Al), 4217 for flow, 124 for
copper (Cu), 134 for cadmium (Cd), and 70 for zinc (Zn).

2.3.1.2. Outlier analysis. In data-driven modeling, while extreme values
are very important for learning algorithms tomake an accurate prediction
under extreme conditions, outlier values could lead the learning algo-
rithm to provide false prediction under extreme conditions. According
to Reimann et al. (2005), extreme values are those values that belong to
the same distribution of data, but far away from the center, whereas out-
lier values belong to different distributions. From environmental risk
point of view, accurate predictions of extreme values are necessary in
order to make a conservative decision. In this study, therefore, multivari-
ate outlier analysis is conducted using the adaptive outlier detection algo-
rithm in RStudio to remove outlier values from the data. In order to
identify outlier values, this function compares the observed and empirical
chi-square distributions, where the latter is computed from a robust
square distance on the basis of the minimum covariance determinant
estimator (Filzmoser et al., 2005). The 99% percentile of observed and
empirical distributions was used to differentiate outliers from extreme
values. As a result, 951 outliers were found and removed from this
dataset.

2.3.2. Selection of variables for drainage chemistry
The input variables tomachine learning techniques should consist of

all relevant variables that influence the ARD generation (Betrie et al.,
2012). However, overlapping information of input variables is avoided
to simplify the task of the training algorithms. For this reason, a nonlin-
ear correlation analysis was conducted using themaximumcriterion in-
formation (MIC) (Reshef et al., 2011) algorithm implemented in
RStudio to identify correlation between input and output variables.
Table 1
Correlation between input and output variables using the MIC.

pH Conductivity Sulfate Alkalinity Acid

pH 1.0
Conductivity 0.3 1.0
Sulfate 0.3 0.5 1.0
Alkalinity 0.4 0.2 0.1 1.0
Acidity 0.4 0.4 0.5 0.2 1.0
Flow 0.2 0.2 0.2 0.1 0.2
Ca 0.1 0.4 0.5 0.1 0.2
Mg 0.3 0.5 0.5 0.1 0.3
Al 0.5 0.3 0.4 0.2 0.5
Cu 0.8 0.3 0.4 0.3 0.5
Cd 0.5 0.1 0.2 0.2 0.3
Zn 0.7 0.2 0.3 0.3 0.3
Unlike other correlation analysis methods (e.g., Spearman, Pearson,
and Kendall), the MIC detects not only a linear relationship but also
other nonlinear relationships such as cubic, exponential, categorical, pe-
riodic, hyperbolic and various sinusoidal types. Its value ranges between
zero and one, where zero and one indicate no and perfect relationships,
respectively. The correlation between input and output variables is
shown in Table 1. A value greater than or equal to 0.3 was used from
the values presented in Table 1 as criterion to select input variable. It
shows that the copper concentration correlated to pH, alkalinity, sulfate,
acidity, and Al. The Cd concentration is correlated to pH and Al. The Zn
concentration is correlated to pH and Al. Therefore, heavy metals (Cu,
Cd, and Zn) are predicted as function of pH, alkalinity, sulfate, acidity,
and flow. Although flow has a weak correlation with other variables, it
is included as input variable becausewebelieve that themachine learning
techniques can extract more complex nonlinear relationships than the
MIC.

2.3.3. Model development and evaluation
The dataset was divided into training and testing sets following the

k-fold cross-validation method (Mitchell, 1997). In this method, the
dataset is subdivided into k subsets preferably of equal size. Next, the
k − 1 subsets are used to train the machine learning algorithms and
the remaining one subset is used for testing the models. In this study,
each subset has the size of 475 values and ten-fold cross-validation is
used.

The predictive accuracy of each machine learning technique was
evaluated using Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Root Relative Squared Error (RRSE), Relative Absolute
Error (RAE), where the smaller value indicates a better technique
(Betrie et al., 2012). The predictive accuracy helps to evaluate the over-
all match between observed and predicted values for each machine
learning technique. The equations of the error estimates are given in
Eqs. (15)–(18):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Yo−Yp

� �2

n

vuuut
ð15Þ

MAE ¼

Xn
i¼1

Yo−Yp

���
���

n
ð16Þ

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

Yo−Yp

� �2

Xn
i¼1

Yo−Yo

� �2

vuuuuuuut
ð17Þ
ity Flow Ca Mg Al Cu Cd Zn

1.0
0.2 1.0
0.2 0.6 1.0
0.2 0.3 0.4 1.0
0.1 0.2 0.3 0.7 1.0
0.1 0.3 0.2 0.5 0.5 1.0
0.1 0.2 0.2 0.5 0.7 0.6 1.0
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Xn
Yo−Yp

���
���
RAE ¼ i¼1
Xn
i¼1

Yo−Yo

�� ��
ð18Þ

where Yo and Yp represent the observed and predicted outputs, yp
represents themean the predicted output and n represents the number
of examples presented to the learning algorithms. On the other hand,
the predictive uncertainty of eachmachine learning technique is evalu-
ated by comparing the observed and predicted P-boxes.

3. Results and discussion

Performances of the ANN and SVM models in predicting the heavy
metals in terms of the four evaluation methods are presented in
Table 2. For the prediction of Cu using ANN, it shows that Cu-5 and
Cu-4 models are the best and the worst predictions, respectively. For
the prediction of Cu using SVM, Cu-2 and Cu-1 models are the best
and worst predictions, respectively. The range of the performance indi-
cates that the ANN model has a higher prediction uncertainty than the
SVMmodel. For the prediction of Cd, bothmodels have the same uncer-
tainty band and the performances of the models are not good as shown
by the RRSE and RAE measures. For the prediction of Zn, Zn-6 and Zn-2
models of ANN are the best and worst, whereas Zn-8 and Zn-2 of SVM
are the best and theworstmodels, respectively. The range of the perfor-
mancemeasures indicates that the prediction of ANN is higher than that
of SVM.

The predicted and observed P-boxes are shown in Fig. 3. This figure
shows that the predicted Cu concentration using ANN very well
enveloped the observed Cu distribution, whereas the prediction of
SVM has not enveloped the observed Cu distribution completely. As in-
dicated by the performance measure above, the upper bound of ANN
prediction is higher than the upper bound of SVM prediction. The ob-
served of Cd concentration is not enveloped by both the ANN and
Table 2
Performance of ANN and SVM models in terms of four evaluation measures.

ANN SVM

Model MAE RMSE RRSE RAE MAE RMSE RRSE RAE

Cu-1 0.11 0.20 34.20 23.23 0.16 0.25 41.73 32.81
Cu-2 0.12 0.20 37.65 27.89 0.13 0.20 39.17 30.98
Cu-3 0.13 0.18 32.21 26.67 0.15 0.21 38.66 31.99
Cu-4 0.29 0.32 57.32 60.94 0.15 0.22 39.08 31.75
Cu-5 0.09 0.16 28.20 20.00 0.14 0.21 37.06 30.21
Cu-6 0.13 0.18 31.32 26.86 0.14 0.20 34.97 27.76
Cu-7 0.13 0.21 34.83 26.07 0.15 0.22 36.77 29.76
Cu-8 0.13 0.20 36.54 26.91 0.15 0.22 39.58 32.06
Cu-9 0.11 0.17 30.86 22.19 0.14 0.20 36.31 29.21
Cu-10 0.11 0.17 33.28 24.56 0.14 0.21 40.24 32.03
Cd-1 0.01 0.02 73.89 60.39 0.01 0.02 73.89 60.39
Cd-2 0.01 0.02 77.82 64.53 0.01 0.02 77.82 64.53
Cd-3 0.01 0.02 75.19 61.14 0.01 0.02 75.19 61.14
Cd-4 0.01 0.01 71.89 63.86 0.01 0.01 71.89 63.86
Cd-5 0.01 0.01 71.62 61.78 0.01 0.01 71.62 61.78
Cd-6 0.01 0.01 71.15 59.63 0.01 0.01 71.15 59.63
Cd-7 0.01 0.02 74.43 60.73 0.01 0.02 74.43 60.73
Cd-8 0.01 0.01 71.54 58.65 0.01 0.01 71.54 58.65
Cd-9 0.01 0.02 72.73 59.23 0.01 0.02 72.73 59.23
Cd-10 0.01 0.02 79.26 62.12 0.01 0.02 79.26 62.12
Zn-1 1.34 2.41 57.68 42.30 1.48 2.55 60.95 46.91
Zn-2 1.51 2.52 59.56 46.19 1.58 2.69 63.66 48.30
Zn-3 1.48 2.53 59.28 43.93 1.58 2.69 62.81 46.95
Zn-4 1.25 1.83 49.11 40.94 1.42 2.04 54.65 46.35
Zn-5 1.19 1.94 50.09 39.84 1.36 2.15 55.58 45.62
Zn-6 1.19 1.86 48.67 38.06 1.38 2.12 55.27 44.21
Zn-7 1.34 2.33 56.95 41.87 1.50 2.50 61.05 46.90
Zn-8 1.16 2.06 52.37 36.52 1.34 2.19 55.82 42.12
Zn-9 1.32 2.25 54.88 41.75 1.45 2.47 60.29 45.70
Zn-10 1.33 2.68 62.81 42.93 1.49 2.79 65.38 48.05
SVM models prediction. This is attributed to the majority of Cd data
(over 90%) below 0.05 mg/L, which is a value of analytical detection
limit. The data above 0.05 mg/L do not have information to identify an
empirical model. Nevertheless, it is interesting to note that 90% of the
data are well enveloped by ANN and SVM. The majority of observed
Zn distribution is well enveloped by the prediction of ANN except a
small portion of the upper and lower bounds. On the other hand, the
prediction of SVM has not enveloped some parts of the observed Zn.

The comparison between the integrated (ANN–SVM) prediction of
Cu and observed P-boxes is shown in Fig. 4. This figure shows that the
integrated prediction using the envelope and intersection methods
gives the individual prediction of ANN and SVM, respectively. The inte-
grated prediction using themixturemethod is higher than the observed
upper bound distribution. However, the mixture result is closer to the
observed upper bound than the individual prediction of ANN. The inte-
grated prediction of Cu using the average method well enveloped the
P-box for the observed concentrations. However, the majority part of
the mixture upper bound is higher than the observed upper bound.

The comparison between the integrated (ANN–SVM) prediction of
Cd and observed P-boxes is shown in Fig. 5. This figure shows that any
of the integrationmethods could not improve the prediction uncertainty
of individual models. Also, it shows that the integrated predictions are
exactly the predictions of individual ANN and SVM. As discussed previ-
ously, these poor predictions are attributed to lack of heterogeneity in
the Cd data.

The comparison between the integrated (ANN–SVM) prediction of
Zn and observed P-boxes is shown in Fig. 6. This figure shows that the
integrated prediction using the envelop method well bounded the
observed P-box except the slight portion of the upper bound. It is inter-
esting to note that thismethod improved the poor predictions of ANN at
the lower part of the upper bound distribution. The integrated prediction
using the intersectionmethod has not enveloped the upper bound of the
observed distribution. The integrated prediction of Zn using the mixture
and average methods has not enveloped the upper portion of the ob-
served upper bound.

The correlation coefficients between variables reported in this study
are quite different from values reported in previous studies. For instance,
the correlations in this study between Cu (i.e., dependent) and pH, con-
ductivity, sulfate, and alkalinity (i.e., independent) are equal to 0.8, 0.3,
0.4, and 0.3, respectively as seen in Table 1. Aryafar et al. (2012) reported
that the relationship between Cu (i.e., dependent) and pH, conductivity,
sulfate, and alkalinity (i.e., independent) is equal to −0.697, 0.757,
0.663, and−0.199, respectively. Betrie et al. (2012) reported that the re-
lationship between Cu (i.e., dependent) and pH and conductivity is equal
to−0.74, and 0.52, respectively. The absolute values of these and previ-
ous studies for Cu and pH show that there is an agreement, whereas the
absolute values of this study and previous works disagree for correlation
betweenCu and the other variables. This disagreement is likely attributed
to the effect of outliers. All previous studies used linear correlation
methods (Spearman and Pearson) that are highly sensitive to outliers
(Gideon et al., 1987). Therefore, the correlation results of previous studies
are relatively inflated compared to this study that does not have outliers.

The evaluation among machine learning techniques based on pre-
dictive accuracy byAryafar et al. (2012) and Betrie et al. (2012) reported
that SVM performed best compared to other techniques. Furthermore,
Betrie et al. (2012) reported that SVM performed best compared to
other methods based on predictive uncertainty. However, this study
shows that ANN is better than SVM since it envelops very well the ob-
served data as depicted in Fig. 3. This finding indicates that the higher
predictive uncertainty of ANN,which is often considered as a limitation,
has enabled ANN to envelop the observed P-box. It is interesting to note
that this finding indicates that selection of an optimal model based on
model accuracy (i.e., evaluation techniques) presented in Section 2.3.3
could be misleading. This agrees with that of Cherkassky and Mulier
(2006) who stated that a selection of model based on evaluation tech-
niques cannot guarantee an optimal model in critical situations.



Fig. 3. Predicted and observed P-boxes for Cu, Cd, and Zn.
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Therefore, it could be reliable to select an optimal model based on pre-
dictive uncertainty rather than predictive accuracy of models.

It is worth noting that while the gap between the lower and upper
bounds informs the degree of epistemic uncertainty, the shapes of
lower and upper bounds inform the degree of aleatory uncertainty
(i.e., variability). The predicted and observed lower bounds have no var-
iability as they are almost straight, whereas the upper bounds have
some variability as shown in the figures. The lack of variability in the
lower bound could be attributed to analytical detection limits. Both
the observed and predicted data have epistemic uncertainty as shown
Fig. 4. Integrating ANN and SVM predictions for C
in the figures. Thus, this indicates that there is a need for further study
and data collection to reduce the epistemic uncertainty.

Although the machine learning techniques predicted well the
observed distribution of Cu and Zn, they have not performed well for
the Cd prediction as seen in Fig. 3. Most of the observed data (over
90%) are below 0.05 mg/L (see Fig. 7) and those data above this value
do not have enough information to identify an empirical model. Subse-
quently, the maximum concentration value predicted by ANN and SVM
is slightly over 0.05 mg/L. This result indicates that machine learning
techniques work best if the data have heterogeneity. Of course, one of
u using four methods and observed P-boxes.



Fig. 5. Integrating ANN and SVM predictions for of Cd using four methods and observed P-boxes.
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the limitations of data-driven paradigms including machine learning
techniques is the requirement of a large database (Cherkassky and
Mulier, 2006; Solomatine & Ostfeld, 2008). In case the data lack hetero-
geneity, a classical modeling approach (e.g., multiple linear regression)
should be used instead of machine learning techniques.

Integrating the prediction of ANN and SVM using the aggregation
methods improved the prediction results except for the prediction of
Cd as shown in Figs. 4-6. For the integration of Cu prediction, the average
method performed best followed by mixture, envelope and intersection.
On the other hand, the envelope method performed best followed by
mixture, average and intersection in the integration of Zn prediction.
It is interesting to note that the intersection method has the worst
Fig. 6. Integrating ANN and SVM predictions for Z
performance and no single method performed best for the prediction
of Cu and Zn. This result indicates that all aggregation methods should
be investigated by modelers if the intention is to improve prediction
results.

4. Summary and conclusions

This study quantifies the predictive uncertainty of two machine
learning techniques for predicting acid rock drainage (ARD) chemistry
using the probability bounds (P-boxes) approach. Also, it integrates
the prediction of machine learning techniques using four aggregation
methods to improve the individual prediction. The two machine
n using four methods and observed P-boxes.



Fig. 7. Observed concentrations of Cd.
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learning techniques used are artificial neural networks (ANN) with
multilayer perceptrons and support vector machine with polynomial
kernel.

Missing values in the data were estimated using the iterative robust
model-based imputation algorithm. Multivariate outlier analysis was
conducted using the adaptive outlier detection algorithm to remove
outlier values from the data. Note that a selection of percentile value for
outlier analysis should be done in consultation with an expert opinion
since it has a serious implication for risk analysis. A nonlinear correlation
analysis was conducted using the maximum information criterion algo-
rithm to identify the relationship between independent and dependent
variables. Based on the correlation analysis, heavy metals (Cu, Cd, and
Zn) were predicted as a function of pH, alkalinity, sulfate, acidity, and
flow. The predictive accuracy of ANN and SVM algorithmswas evaluated
using the Root Mean Squared Error, Mean Absolute Error, Root Relative
Squared Error, and Relative Absolute Error. The epistemic and aleatory
uncertainties in the prediction results were quantified using P-boxes
and compared with the observed P-boxes graphically. A visual compari-
son of observed and predicted P-boxes was used as a measure of predic-
tion uncertainty. The predictions of ANN and SVMwere integrated using
envelope, intersection, mixture, and average methods.

The results of this study show that the predictions of ANN enveloped
well the observed Cu and Zn concentrations than the SVM prediction.
On the other hand, both algorithms did not envelope the observed Cd
concentrations. The prediction of Cd was not good because there was
little heterogeneity in the Cd dataset since 90% of the dataset is below
analytical detection limit. These results indicate that the success of
machine learning techniques depends not only on the amount of data
but also on heterogeneity within the data.

Integrating the prediction of ANN and SVM using the aggregation
methods improved the prediction results except for Cd.While the enve-
lope, mixture and averagemethods showed good performances, the in-
tersection method showed poor performances. These results indicated
that there is no best aggregation method, but rather analysts should in-
vestigate to determine which one improves predictions.

This study not only quantified prediction uncertainty, but also identi-
fied the sources of uncertainties, and whether there is a possibility to re-
duce them. In addition, the study showed the danger of selecting an
optimal technique model using predictive accuracy and thus highlights
the use of predictive uncertainty using P-boxes for selecting an optimal
model.

In general, this study presented a novel methodology to apply ma-
chine learning techniques for the prediction of ARD chemistry in
minesites and quantify prediction uncertainty. This methodology
could be used as an integral part of ARD risk assessment and manage-
ment framework.
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